到目前为止,航运业是全球贸易的最大推动者,货船承担了全球90%的货物运输。为了满足日益严格的排放法规要求,除了高效清洁的发动机研发外,设计越来越高效的船舶推进系统势在必行。船舶性能的核心因素之一就是螺旋桨。
CONVERGE作为一款优秀CFD分析工具在船用发动机分析领域已经为人熟知,事实上,它在分析和优化螺旋桨设计上也具备很多优势。通过完全自主的网格划分,即便是最复杂的螺旋桨几何形状,CONVERGE也可以快速生成高质量的计算网格。同时,CONVERGE可以在每个时间步内对局部空间的网格实现重构,达到无缝适应螺旋桨运动的网格效果。此外,CONVERGE包括了稳健的多相流、流固交互(FSI)和空化模型,这些都是三维评估和分析螺旋桨性能所必需的工具。
如何使用CONVERGE应用于螺旋桨分析呢?我们首先在波茨坦螺旋桨测试案例(Potsdam Propeller Test Case, PPTC)上验证CONVERGE稳态和瞬态建模能力,其中螺旋桨是完全浸没的。然后,我们会将CONVERGE应用于物理上更复杂的半浸式螺旋桨模拟。
图1 SVA Potsdam可控螺距螺旋桨VP1304
PPTC: 稳态分析
在第一个验证案例中我们对SVA Potsdam可控螺距螺旋桨VP1304进行稳态模拟(图1)并将结果与公布的实验数据进行比较[1] 。实验测试结果来自于开放水域,在拖曳水池中螺旋桨恒定转速为15转每秒。通过改变入流速度来测试不同的推进系数(J),并测量每次运行时叶片的推力和扭矩。根据这些测量结果,确定开放水域特性,如推力系数(KT)、扭矩系数(KQ)和开放水域效率(η0)。在CONVERGE模型中,我们采用了k-ω SST湍流模型,基于速度的自适应网格加密(AMR)以及对运动几何的多重参考坐标系(MRF)方法。
图2显示了实验和仿真的推力系数、扭矩系数及开放水域效率。在整个推进系数范围内,CONVERGE结果和实验数据吻合良好。
图2 实验和仿真的推力系数、扭矩系数
及开放水域效率
PPTC:瞬态分析
稳态PPTC验证之后,我们进行瞬态模拟将仿真预测的速度场和公开的实验测试值比较[2]。在空化试验中进行激光多普勒测速(LDV),对多个位置的速度进行测量。CONVERGE自动化网格生成有利于解析旋转的螺旋桨几何结构。和稳态求解一样,我们使用k-ω SST湍流模型和基于速度的AMR。在下面的视频中(图3),等值面代表涡量,垂直于螺旋桨轴的平面上显示网格。从视频中可以看到CONVERGE的自动化网格是如何适应螺旋桨运动以及AMR是如何调整网格解析度来捕捉流场的。
图3 PPTC CONVERGE瞬态结果
等值面为涡量,垂直于轴的平面显示网格
图4显示了x/D=0.2平面上两个不同径向位置的实验和数值的速度结果。CONVERGE精确捕捉了轴向、切向和径向速度趋势。
图4 PPTC瞬态案例中轴向速度
切向速度和径向速度的实验和仿真值
半浸式螺旋桨
在验证了CONVERGE可以准确预测水下螺旋桨关键性能因素后,我们接着讨论一个更复杂的场景:半浸式螺旋桨。研究对象依然是SVA Potsdam可控螺距螺旋桨VP1304几何。仿真模型利用CONVERGE的VOF方法,单独组分求解来模拟多相流。此外,还会用到表面压缩技术来追踪空气和水的界面。和之前的案例一样,CONVERGE自动化网格生成技术让案例设置更简单,AMR有助于重要物理现象的准确捕捉。在下面的视频中(图5)可以看到CONVERGE捕捉了复杂的尾迹结构并保持清晰的空气-水界面。
图5 半浸式螺旋桨CONVERGE仿真结果
等值面代表气液比为0.5
中间截面显示网格,颜色代表速度
结论
上述研究验证了CONVERGE的螺旋桨仿真建模能力,并展示了CONVERGE在复杂情况下的实用性。结合CONVERGE的流体-结构交互作用(FSI)和空化模型,用户可以对船舶推进和螺旋桨磨损进行更全面的研究。CONVERGE是评估螺旋桨性能的强大工具,自动化网格生成技术使螺旋桨设计测试变得更加容易。
—参考文献—
[1] Barkmann, U.H., “Potsdam Propeller Test Case (PPTC): Open Water Tests With the Model Propeller VP1304,” Schiffbau-Versuchsanstalt Potsdam GmbH Report 3752, 2011.
[2] Mach, K.-P., “Potsdam Propeller Test Case (PPTC) – LDV Velocity Measurements With the Model Propeller VP1304,” Schiffbau-Versuchsanstalt Potsdam GmbH Report 3754, 2011.